A Choose the variable you want to keep.

$$
\begin{array}{r}
3 x+8 y=74 \\
3 x+y=25
\end{array}
$$

The x coefficient (number in front of the x) is the same in both cases. You can take one from the other leaving just the y part of the equation. It doesn't matter if the number is negative or positive at this stage.

$$
\begin{aligned}
& 6 x+5 y \\
= & =74 \\
6 x+2 y & =25 \\
x+4 y & =20 \\
3 x+4 y & =36 \\
3 x+y & =37 \\
3 x+y & =23
\end{aligned}
$$

C Find the value of the first variable

$$
\begin{gather*}
3 x+8 y=74 \\
3 x+y=25 . \tag{i}
\end{gather*}
$$

Subtract (i) - (ii)
$(3-3) x+(8-1) y=74-25$

$$
\begin{aligned}
7 y & =49 \\
y & =7
\end{aligned}
$$

B
Add or subtract the equations

$$
\left.\begin{array}{rlr}
3 x+8 y & =74 \\
3 x+y & =25
\end{array} \quad \right\rvert\, \begin{aligned}
9 x+5 y & =53 \\
4 y-9 x & =10
\end{aligned}
$$

Here, the "signs" for the

coefficients in front of the variable you want to remove are the same (ie both positive) so you need to subtract the equations.

Here, the "signs" for the coefficients in front of the variable you want to remove are the different (ie positive and negative) so you need to add the equations so the x terms cancel each other out
$\left.\begin{array}{c}6 x+5 y=74 \\ 6 x+2 y=25 \\ 6\end{array}\right)$

D Find the value of the second variable

$$
\begin{gathered}
3 x+8 y=74 \ldots \ldots \text { (i) } \\
\vdots
\end{gathered}
$$

Substitute in (i)

$$
\begin{aligned}
3 x+8(7) & =74 \\
3 x & =74-56 \\
3 x & =18 \\
x & =6
\end{aligned}
$$

We take the value for y (which we found in part C) and substitute it into this equation.

[^0]
Simultaneous Equations

E What if the coefficients are related but not the same?

Neither the x nor the y coefficients are the same in multiply equations. You may notice that you multiply equation (ii) $\times 4$, you will get a y continue as before.

$$
\begin{equation*}
3 x+8 y=106 \tag{l}
\end{equation*}
$$

Multiply (ii) $\times 4$
$4 x+8 y=112$
Subtract (iii) - (i)

$$
\begin{equation*}
(4-1) x+(8-8) y=112-106 \tag{iii}
\end{equation*}
$$

G Solve the equations in their entirety.

$$
\begin{aligned}
9 x+8 y & =47 \ldots \ldots(\text { (i) } \\
5 x-3 y & =41 \ldots \ldots \text { (ii) }
\end{aligned}
$$

Multiply (i) $\times 5$, (ii) $\times 9$

$$
\begin{align*}
45 x+40 y & =235 \ldots \ldots \text { (iii) } \tag{iii}\\
45 x-27 y & =369 \ldots \ldots \text { (iv) }
\end{align*}
$$

Subtract (iii) - (iv)

$(45-45) x+(40-(-27)) y=235-369$

$$
\begin{array}{|r|r}
\hline \text { Be careful with } \\
\text { double } \\
\text { minuses etc. }
\end{array} \quad \begin{aligned}
67 y & =-134 \\
y & =\frac{-134}{67} \\
y & =-2
\end{aligned}
$$

Substitute in (i)

$$
\begin{aligned}
9 x+8(-2) & =47 \\
9 x-16 & =47 \\
9 x & =47+16 \\
9 x & =63
\end{aligned}
$$

Check in (ii)
$5 x-3 y=41$
(ii) $5(7)-3(-2)=41$

$$
\begin{aligned}
& 1 \quad 11 x+6 y=30 \ldots \ldots \text { (i) } \\
& 5 x-5 y=60
\end{aligned}
$$

What if the coefficients are unrelated and not the same?
$7 x+8 y=43$
$5 x+3 y=47$

Here, the coefficients are unrelated: 8 is not a multiple of 3; 7 is not a multiple of 5. You decide which term, x or y, you wish to get rid of.
Imagine we have chosen, "Get rid of x ".
Multiply equation (i) $\times 5$ (which is the x coefficient in equation (ii))
Then, multiply equation (ii) $\times 7$ (which is the x coefficient in equation (i))
If you had decided on y, you would multiply (i) $\times 3$ and (ii) $\times 8$.

Multiply (i) $\times \mathbf{5}$, (ii) $\times \mathbf{7}$

$35 x+40 y=215$
$35 x+21 y=329$
Subtract (iii) - (iv)

Equal coefficients

This may involve finding one unknown in each equation with the same coefficients or multiplying one of more of the equations to manufacture the same coefficients.

Get rid of one unknown

This involves either adding (if the coefficients are of different signs (- or +) or subtracting if they are the same sign.

Substitute into equation (i) or (ii)

Swap the value you have found for x or the value you have found for y into equation (i) or (ii). Solve the equation.

Check your answer

Swap the value you have found for x or the value you have found for y into the other equation. If it works - give yourself a tick!!

Note the strategy for solving simultaneous linear equations

Answers to part G

1	$x=6$	$y=-6$
2	$x=18$	$y=61$
3	$x=17$	$y=-11$
4	$x=-3$	$y=16$
5	$x=1.2$	$y=0.4$
6	$x=-11$	$y=51$

[^0]: Now answer questions 1-7 given in \mathbf{A}

